
تعداد نشریات | 163 |
تعداد شمارهها | 6,877 |
تعداد مقالات | 74,134 |
تعداد مشاهده مقاله | 137,824,496 |
تعداد دریافت فایل اصل مقاله | 107,228,905 |
Exploring the Nutritional and Therapeutic Potentials of Red Seaweeds: A Review | ||
Journal of Food and Bioprocess Engineering | ||
دوره 7، شماره 2، اسفند 2024، صفحه 51-68 اصل مقاله (817.88 K) | ||
نوع مقاله: Review article | ||
شناسه دیجیتال (DOI): 10.22059/jfabe.2025.377923.1180 | ||
نویسندگان | ||
Simmaky Surendran1؛ RGS Wijesekara2؛ Sukirtha Srivarathan3؛ KDPP Gunathilake* 4 | ||
1Department of Biosystems Technology, Faculty of Technology University of Jaffna, Ariviyal Nagar, Kilinochchi. Sri Lanka, Department of Food Science & Technology, Faculty of Livestock, Fisheries & Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, 60150, Sri Lanka | ||
2Department of Aquaculture & Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, 60170, Sri Lanka | ||
3Department of Biosystems Technology, Faculty of Technology University of Jaffna, Ariviyal Nagar, Kilinochchi. Sri Lanka | ||
4Department of Food Science & Technology, Faculty of Livestock, Fisheries & Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, 60150, Sri Lanka | ||
چکیده | ||
Seaweeds stand out as a cost-effective, ecologically friendly, and productive source of bioactive compounds, Additionally, readily available in natural ecosystems. With growing interest, Seaweeds are finding widespread application in various sectors particularly in food, healthcare and cosmetics owing to their abundance in bioactive substances and minimal competition for freshwater and land resources. Seaweeds hold promise in preventing and treating chronic diseases and in producing functional food, attributed to their rich array of bioactive compounds. Among them, red seaweeds (Rhodophyta), the most prevalent class, boasts a diverse profile of seaweeds, that are potentially rich in bioactive compounds, including polysaccharides, soluble dietary fibers, proteins, peptides, polyunsaturated fatty acids, vitamins, minerals, pigments, phycobiliproteins and secondary metabolites (polyphenols, flavonoids, steroids, glycosides, alkaloids, tannins, saponins and triterpenoids). These compounds exhibit various biological activities, such as antibacterial, anti-inflammatory, anticancer, antidiabetic, anti-obesity, and anti-hypertensive properties. This review delves into the bioactive components, characteristics, and applications of red seaweeds, aiming to raise awareness among the public regarding seaweed consumption as a dietary source. | ||
کلیدواژهها | ||
Seaweed؛ Bioactive؛ Functional food؛ Red algae؛ Secondary metabolites | ||
مراجع | ||
Abirami, R., G., & Kowsalya, S. (2012). Phytochemical screening, microbial load and antimicrobial activity of underexploited seaweeds. Int. Res. J. Microbiol. 3, 328–332. Available online http://www.interesjournals.org/IRJM. Abu‐Ghannam, N., & Rajauria, G. (2013). Antimicrobial activity of compounds isolated from algae. In Functional Ingredients from Algae for Foods and Nutraceuticals (pp. 287–306). https://doi.org/10.1533/9780857098689.2.287. Admassu, H., Gasmalla, M. a. A., Yang, R., & Zhao, W. (2017). Bioactive Peptides Derived from Seaweed Protein and Their Health Benefits: Antihypertensive, Antioxidant, and Antidiabetic Properties. Journal of Food Science, 83(1), 6–16. https://doi.org/10.1111/1750-3841.14011. Agrawal, S. P., Siddiqui, S. A., Chaudhary, & Rathore, M. S. (2022). Bioprospection and compositional multivariate analysis revealed the industrial potential of selected seaweeds along the Gujarat seacoast. Bioresource Technology Reports, 19, 101130. https://doi.org/10.1016/j.biteb.2022.101130. Ahmed, H. H., Hegazi, M., Abd‐Alla, H. I., Eskander, E. F., & Ellithey, M. S. (2011). Antitumour and Antioxidant Activity of Some Red Sea Seaweeds in Ehrlich Ascites Carcinoma in vivo. Zeitschrift Für Naturforschung C, 66(7–8), 367–376. https://doi.org/10.1515/znc-2011-7-808. Al-Araby, S. Q., Rahman, M. A., Chowdhury, M. A., Das, R. R., Chowdhury, T. A., Hasan, C. M., Afroze, M., Hashem, M. A., Hajjar, D., Alelwani, W., Makki, A. A., & Haque, M. A. (2020). Padina tenuis (marine alga) attenuates oxidative stress and streptozotocin-induced type 2 diabetic indices in Wistar albino rats. South African Journal of Botany, 128, 87–100. https://doi.org/10.1016/j.sajb.2019.09.007. Anandakumar, S., Balamurugan, M., Rajadurai, M., & Vani, B. (2008). Antihyperglycemic and antioxidant effects of red algae Hypnea musciformis in alloxan-induced diabetic rats. Biomedicine, 28(1), 34e38. Antony, T., & Chakraborty, K. (2019). First report of antioxidative 2Hchromenyl derivatives from the intertidal red seaweed Gracilaria salicornia as potential anti-inflammatory agents. Natural Product Research, 34(24), 3470–3482. https://doi.org/10.1080/14786419.2019.1579807. Appu, A., Sadanandan, R., & Ravichandran, S. (2023). Screening of Antibacterial, Antifungal and Antioxidant Activity of Methanolic Extract from Marine Algae, Hypnea indica. Advances in Zoology and Botany, 11(4), 239–245. https://doi.org/10.13189/azb.2023.110401. Araújo, M. L. H., Melo, V. M. M., Silva, L., Amorim, R., Pereira, M., & Benevídes, N. M. B. (2005). Differential activity of a lectin from Solieria filiformis against human pathogenic bacteria. Brazilian Journal of Medical and Biological Research, 38(12), 1769–1773. https://doi.org/10.1590/s0100-879x2005001200005. Arulkumar, A., Rosemary, T., Paramasivam, S., & Ramaswamy, B. R. (2018). Phytochemical composition, in vitro antioxidant, antibacterial potential and GC-MS analysis of red seaweeds (Gracilaria corticata and Gracilaria edulis) from Palk Bay, India. Biocatalysis and Agricultural Biotechnology, 15, 63–71. https://doi.org/10.1016/j.bcab.2018.05.008. Aryee, A. N. A., Agyei, D., & Akanbi, T. O. (2018b). Recovery and utilization of seaweed pigments in food processing. Current Opinion in Food Science, 19, 113–119. https://doi.org/10.1016/j.cofs.2018.03.013. Baghel, R. S., Choudhary, B., Pandey, S., Pathak, P. K., Patel, M. K., & Mishra, A. (2023). Rehashing our insight of seaweeds as a potential source of foods, nutraceuticals, and pharmaceuticals. Foods, 12(19), 3642. https://doi.org/10.3390/foods12193642. Bahari, A., Moelants, K., Huc-Mathis, D., Wallecan, J., Mangiante, G., Mazoyer, J., Hendrickx, M., & Grauwet, T. (2022). Compositional and rheological analysis of carrageenan from the gametophyte phase of the red seaweed Chondrus crispus neutrally extracted at varying temperatures and time. Food Hydrocolloids, 133, 107995. https://doi.org/10.1016/j.foodhyd.2022.107995. Bansemir, A., Blume, M. C., Schröder, S., & Lindequist, U. (2006). Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture, 252(1), 79–84. https://doi.org/10.1016/j.aquaculture.2005.11.051. Banskota, A. H., Stefanova, R., Sperker, S., Lall, S. P., Craigie, J. S., Hafting, J. T., & Critchley, A. T. (2014). Polar lipids from the marine macroalga Palmaria palmata inhibit lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells. Phytochemistry, 101, 101–108. https://doi.org/10.1016/j.phytochem.2014.02.004. Barral-Martinez, M., Flórez-Fernández, N., Domı́Nguez, H., & Torres, M. D. (2020b). Tailoring hybrid carrageenans from Mastocarpus stellatus red seaweed using microwave hydrodiffusion and gravity. Carbohydrate Polymers, 248, 116830. https://doi.org/10.1016/j.carbpol.2020.116830. Besednova, N. N., Andryukov, B. G., Zaporozhets, T. S., Kryzhanovsky, S. P., Kuznetsova, T. A., Fedyanina, L. N., ... & Zvyagintseva, T. N. (2020). Algae Polyphenolic Compounds and Modern Antibacterial Strategies: Current achievements and immediate Surendran et al. JFBE 7(2): 51-68,2024 62 Prospects. Biomedicines, 8(9), 342. https://doi.org/10.3390/biomedicines8090342. Bhakuni D, Rawat D. (2006). Bioactivity of marine organisms. In Springer eBooks: Bioactive Marine Natural Products. Springer, Dordrecht. 103–124. https://doi.org/10.1007/1-4020-3484-9_5. Bleakley, S., & Hayes, M. (2017). Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods, 6(5), 33. https://doi.org/10.3390/foods6050033. Bohn, T., Bonet, M. L., Borel, P., Keijer, J., Landrier, J., Milisav, I., Ribot, J., Riso, P., Winklhofer‐Roob, B. M., Sharoni, Y., Corte-Real, J., Van Helden, Y., Loizzo, M. R., Poljšak, B., Porrini, M., Roob, J. M., Trebše, P., Tundis, R., Wawrzyniak, A., . . . DulińskaLitewka, J. (2021). Mechanistic aspects of carotenoid health benefits – where are we now? Nutrition Research Reviews, 34(2), 276–302. https://doi.org/10.1017/s0954422421000147. Boonsri, N., Rudtanatip, T., Withyachumnarnkul, B., & Wongprasert, K. (2016b). Protein extract from red seaweed Gracilaria fisheri prevents acute hepatopancreatic necrosis disease (AHPND) infection in shrimp. Journal of Applied Phycology, 29(3), 1597– 1608. https://doi.org/10.1007/s10811-016-0969-2. Bouhlal, R., Hassane, R., José, M., & Bourgougnon, N. (2010). The antibacterial potential of the Seaweeds (Rhodophyceae) of the Strait of Gibraltar and the Mediterranean Coast of Morocco. HAL (Le Centre Pour La Communication Scientifique Directe). https://hal.science/hal-00858021. Carpena, M., Caleja, C., Pereira, E., Pereira, C., Ćirić, A., Sokóvić, M., SoriaLópez, A., Fraga-Corral, M., Simal-Gándara, J., Ferreira, I. C., Barros, L., & Prieto, M. A. (2021). Red seaweeds as a source of nutrients and bioactive compounds: optimization of the extraction. Chemosensors, 9(6), 132. https://doi.org/10.3390/chemosensors9060132. Carpena, M., García-Pérez, P., Garcia‐Oliveira, P., Chamorro, F., Otero, P., Lourenço-Lopes, C., Cao, H., Simal-Gándara, J., & Prieto, M. A. (2022). Biological properties and potential of compounds extracted from red seaweeds. Phytochemistry Reviews, 22(6), 1509–1540. https://doi.org/10.1007/s11101-022-09826-z. Chan, P. T., Matanjun, P., Yasir, S. M., & Tan, T. S. (2013). Antioxidant and hypolipidaemic properties of red seaweed, Gracilaria changii. Journal of Applied Phycology, 26(2), 987–997. https://doi.org/10.1007/s10811-013-0135-z. Charoensiddhi, S., Conlon, M. A., Franco, C. M., & Zhang, W. (2017). The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies. Trends in Food Science &Amp; Technology, 70, 20–33. https://doi.org/10.1016/j.tifs.2017.10.002. Charway, G. N. A., Yenumula, P., & Kim, Y. (2018). Marine algae and their potential application as antimicrobial agents. Journal of Food Hygiene and Safety, 33(3), 151–156. https://doi.org/10.13103/jfhs.2018.33.3.151. Chaves, R. P., Da Silva, S. R., Neto, L. G. N., Carneiro, R. F., Da Silva, A. L. C., Sampaio, A. H., Sousa, B., Cabral, M. G., Videira, P. A., Teixeira, E. H., & Nagano, C. S. (2018). Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kützing) P.W. Gabrielson and their anticancer effect on MCF-7 breast cancer cells. International Journal of Biological Macromolecules, 107, 1320–1329. https://doi.org/10.1016/j.ijbiomac.2017.09.116. Chen, J. C., Wang, J., Zheng, B. D., Pang, J., Chen, L. J., Lin, H. T., & Guo, X. (2015). Simultaneous Determination of 8 Small Antihypertensive Peptides with Tyrosine at the C-Terminal in Laminaria japonica Hydrolysates by RP-HPLC Method. Journal of Food Processing and Preservation, 40(3), 492–501. https://doi.org/10.1111/jfpp.12628. Cherry, P., O’Hara, C., Magee, P., McSorley, E. M., & Allsopp, P. J. (2019). Risks and benefits of consuming edible seaweeds. Nutrition Reviews, 77(5), 307–329. https://doi.org/10.1093/nutrit/nuy066. Cheung, R. C. F., Ng, T. B., & Wong, J. H. (2015). Marine peptides: Bioactivities and applications. Marine Drugs, 13(7), 4006–4043. https://doi.org/10.3390/md13074006. Chew, Y. L., Lim, Y. Y., Omar, M., & Khoo, K. S. (2008). Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT, 41(6), 1067–1072. https://doi.org/10.1016/j.lwt.2007.06.013. Choudhary, B., Chauhan, O. P., & Mishra, A. (2021). Edible seaweeds: a potential novel source of bioactive metabolites and nutraceuticals with human health benefits. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.740054. Chronakis, I. S., & Madsen, M. (2011). Algal proteins. In Elsevier eBooks (pp. 353– 394). https://doi.org/10.1533/9780857093639.353. Cian, R. E., Drago, S. R., De Medina, F. S., & Martínez‐Augustin, O. (2015). Proteins and Carbohydrates from Red Seaweeds: Evidence for Beneficial Effects on Gut Function and Microbiota. Marine Drugs, 13(8), 5358–5383. https://doi.org/10.3390/md13085358. Cian, R. E., López-Posadas, R., Drago, S. R., De Medina, F. S., & Martínez‐ Augustin, O. (2012). Immunomodulatory Properties of the Protein Fraction from Phorphyra columbina. Journal of Agricultural and Food Chemistry, 60(33), 8146–8154. https://doi.org/10.1021/jf300928j. Cikoš, A., Šubarić, D., Roje, M., Babić, J., Jerković, I., & Jokić, S. (2022). Recent advances on macroalgal pigments and their biological activities (2016–2021). Algal Research, 65, 102748. https://doi.org/10.1016/j.algal.2022.102748. Cofrades, S., Benedı, J., Garcimartín, A., Sánchez‐Muniz, F. J., & Jiménez‐ Colmenero, F. (2017). A comprehensive approach to formulation of seaweed-enriched meat products: From technological development to assessment of healthy properties. Food Research International, 99, 1084–1094. https://doi.org/10.1016/j.foodres.2016.06.029. Cornish, M. L., & Garbary, D. J. (2010). Antioxidants from macroalgae: potential applications in human health and nutrition. Algae, 25(4), 155–171. https://doi.org/10.4490/algae.2010.25.4.155. Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A., Câmara, R. B. G., Nobre, L. T. D. B., Costa, M. S. S. P., AlmeidaLima, J., Farias, E. D. S., Leite, E. L., & Rocha, H. a. O. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed Pharmacother, 64(1), 21–28. https://doi.org/10.1016/j.biopha.2009.03.005. Cotas, J., Leandro, A., Pacheco, D., Gonçalves, A. M., & Pereira, L. (2020). A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life, 10(3), 19. https://doi.org/10.3390/life10030019. Coura, C. O., De Araújo, I. W. F., Vanderlei, E. S. O., Rodrigues, J. a. G., Quinderé, A. L. G., Fontes, B. P., De Queiroz, I. N. L., De Menezes, D. B., Bezerra, M. M., Silva, A. a. R. E., Chaves, H. V., Jorge, R. J. B., Evangelista, J. S. a. M., & Benevídes, N. M. B. (2011). Antinociceptive and Anti‐Inflammatory Activities of Sulphated Polysaccharides from the Red Seaweed Gracilaria cornea. Basic & Clinical Pharmacology & Toxicology, 110(4), 335–341. https://doi.org/10.1111/j.1742-7843.2011.00811.x. Culioli, G., Daoudi, M., Ortalo-Magné, A., Valls, R., & Piovetti, L. (2001). (S)-12-Hydroxygeranylgeraniol-derived diterpenes from the brown alga Bifurcaria bifurcata. Phytochemistry, 57(4), 529–535. https://doi.org/10.1016/s0031-9422(01)00042-5. Da Silva Chagas, F. D., Lima, G. C., Santos, V. I. N. D., Costa, L. E. C., De Sousa, W. M., Sombra, V. G., De Araújo, D. F., Barros, F. C. N., Marinho‐Soriano, E., De Andrade Feitosa, J. P., De Paula, R. C., De Sousa Pereira, M. L., & Freitas, A. L. P. (2020). Sulfated polysaccharide from the red algae Gelidiella acerosa: Anticoagulant, antiplatelet and antithrombotic effects. International Journal of Biological Macromolecules, 159, 415– 421. https://doi.org/10.1016/j.ijbiomac.2020.05.012. Daniel, S., Cornelia, S., & Fred, Z. (2004). UV-A sunscreen from red algae for protection against premature skin aging. Cosmetics and Toiletries Manufacture Worldwide.129:139–43. Das, D., Arulkumar, A., Paramasivam, S., López-Santamarina, A., Del Carmen Mondragón, A., & Miranda, J. M. (2023). Phytochemical Constituents, Antimicrobial Properties and Bioactivity of Marine Red Seaweed (Kappaphycus alvarezii) and Seagrass (Cymodocea serrulata). Foods, 12(14), 2811. Surendran et al. JFBE 7(2): 51-68,2024 63 https://doi.org/10.3390/foods12142811. De Almeida, C. L. F., De Sousa Falcão, H., De Morais Lima, G. R., De Albuquerque Montenegro, C., Lira, N. S., De Athayde‐Filho, P. F., Rodrigues, L. C., De Fátima Vanderlei De Souza, M., BarbosaFilho, J. M., & Batista, L. M. (2011). Bioactivities from Marine Algae of the Genus Gracilaria. International Journal of Molecular Sciences, 12(7), 4550–4573. https://doi.org/10.3390/ijms12074550. De Arruda, M. C. S., Da Silva, M. R. O. B., Cavalcanti, V. L. R., Brandao, R. M. P. C., De Araújo Viana Marques, D., De Lima, L. R. A., Porto, A. L. F., & Bezerra, R. P. (2023). Antitumor lectins from algae: A systematic review. Algal Research, 70, 102962. https://doi.org/10.1016/j.algal.2022.102962. De Corato, U., Salimbeni, R., De Pretis, A., Avella, N., & Patruno, G. (2017). Antifungal activity of crude extracts from brown and red seaweeds by a supercritical carbon dioxide technique against fruit postharvest fungal diseases. Postharvest Biology and Technology, 131, 16–30. https://doi.org/10.1016/j.postharvbio.2017.04.011. Del Campo, A. M., Fermín-Jiménez, J. A., Fernández-Escamilla, V. V. A., Escalante-García, Z. Y., Macías-Rodríguez, M. E., & EstradaGirón, Y. (2021). Improved extraction of carrageenan from red seaweed (Chondracantus canaliculatus) using ultrasoundassisted methods and evaluation of the yield, physicochemical properties and functional groups. Food Science and Biotechnology, 30(7), 901–910. https://doi.org/10.1007/s10068- 021-00935-7. Domínguez, H. (2013). Algae as a source of biologically active ingredients for the formulation of functional foods and nutraceuticals. In Elsevier eBooks (pp. 1–19). https://doi.org/10.1533/9780857098689.1 Dumay, J., Morançais, M., Munier, M., Guillard, C. L., & Fleurence, J. (2014). Phycoerythrins. In Advances in Botanical Research (pp. 321–343). https://doi.org/10.1016/b978-0-12-408062-1.00011-1. Ejaz, A., Batool, R., Khan, M. U., Rauf, A., Akhtar, W., Heydari, M., Rehman, S., Shahzad, T., Malik, A., Mosavat, S. H., Plygun, S., & Shariati, M. A. (2020). An overview on red algae bioactive compounds and their pharmaceutical applications. Journal of Complementary and Integrative Medicine, 17(4). https://doi.org/10.1515/jcim-2019-0203. El-Beltagi, H. S., Mohamed, A. A., Mohamed, H. I., Ramadan, K. M. A., Barqawi, A. A., & Mansour, A. T. (2022). Phytochemical and potential properties of seaweeds and their recent applications: a review. Marine Drugs, 20(6), 342. https://doi.org/10.3390/md20060342. Engwa, G. A. (2018). Free radicals and the role of plant phytochemicals as antioxidants against oxidative Stress-Related diseases. In InTech eBooks. https://doi.org/10.5772/intechopen.76719. FAO. (2018). The global status of seaweed production, trade and utilization. In: Globefish Research Program. vol. 124. Food and Agriculture Organization of the United Nations, Rome, 120. Farias, W. R. L., Valente, A. P., Pereira, M. S., & Mourão, P. A. (2000). Structure and anticoagulant activity of sulfated galactans. Journal of Biological Chemistry, 275(38), 29299–29307. https://doi.org/10.1074/jbc.m002422200. Fernando, I. P. S., KimMisook, SonKwang-Tae, JeongYoonhwa, & JeonYou-Jin. (2016). Antioxidant activity of marine algal polyphenolic compounds: A mechanistic approach. Journal of Medicinal Food, 19(7), 615–628. https://doi.org/10.1089/jmf.2016.3706. Fidelis, G. P., Câmara, R. B. G., Queiroz, M. F., Costa, M. S. S. P., Santos, P. C., Rocha, H. a. O., & Costa, L. S. (2014). Proteolysis, NaOH and Ultrasound-Enhanced Extraction of Anticoagulant and Antioxidant Sulfated Polysaccharides from the Edible Seaweed, Gracilaria birdiae. Molecules, 19(11), 18511–18526. https://doi.org/10.3390/molecules191118511. Fleurence, J., Morançais, M., & Dumay, J. (2018). Seaweed proteins. In Elsevier eBooks (pp. 245–262). https://doi.org/10.1016/b978-0- 08-100722-8.00010-3. Freitas, M., Pacheco, D., Cotas, J., Mouga, T., Afonso, C., & Pereira, L. (2021). Red Seaweed Pigments from a Biotechnological Perspective. Phycology, 2(1), 1–29. https://doi.org/10.3390/phycology2010001. García‐Vaquero, M., & Hayes, M. (2015). Red and green macroalgae for fish and animal feed and human functional food development. Food Reviews International, 32(1), 15–45. https://doi.org/10.1080/87559129.2015.1041184. Garcimartín, A., Benedı, J., Bastida, S., & Sánchez‐Muniz, F. J. (2015). Aqueous extracts and suspensions of restructured pork formulated with Undaria pinnatifida, Himanthalia elongata and Porphyra umbilicalis distinctly affect the in vitro α-glucosidase activity and glucose diffusion. LWT, 64(2), 720–726. https://doi.org/10.1016/j.lwt.2015.06.050. Gomes, L., Monteiro, P., Cotas, J., Gonçalves, A. M., Fernandes, C., Gonçalves, T., & Pereira, L. (2022). Seaweeds’ pigments and phenolic compounds with antimicrobial potential. Biomolecular Concepts, 13(1), 89–102. https://doi.org/10.1515/bmc-2022- 0003. Gupta, S., and Abu-Ghannam, N. (2011). Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 22, 315–326. doi: 10.1016/j.tifs.2011.03.011. Güven, K. C., Percot, A., & Sezik, E. (2010). Alkaloids in marine algae. Marine Drugs, 8(2), 269–284. https://doi.org/10.3390/md8020269. Hall, A., Fairclough, A., Mahadevan, K., & Paxman, J. (2012). Ascophyllum nodosum enriched bread reduces subsequent energy intake with no effect on post-prandial glucose and cholesterol in healthy, overweight males. A pilot study. Appetite, 58(1), 379–386. https://doi.org/10.1016/j.appet.2011.11.002. Hardouin, K., Burlot, A., Umami, A., Tanniou, A., Stiger‐Pouvreau, V., Widowati, I., Bedoux, G., & Bourgougnon, N. (2013). Biochemical and antiviral activities of enzymatic hydrolysates from different invasive French seaweeds. Journal of Applied Phycology, 26(2), 1029–1042. https://doi.org/10.1007/s10811- 013-0201-6. Harnedy, P. A., & FitzGerald, R. J. (2013). In vitro assessment of the cardioprotective, anti-diabetic and antioxidant potential of Palmaria palmata protein hydrolysates. Journal of Applied Phycology, 25(6), 1793–1803. https://doi.org/10.1007/s10811- 013-0017-4. Harrysson, H., Hayes, M., Eimer, F., Carlsson, N. G., Toth, G. B., & Undeland, I. (2018, April 28). Production of protein extracts from Swedish red, green, and brown seaweeds, Porphyra umbilicalis Kützing, Ulva lactuca Linnaeus, and Saccharina latissima (Linnaeus) J. V. Lamouroux using three different methods. Journal of Applied Phycology, 30(6), 3565–3580. https://doi.org/10.1007/s10811-018-1481-7. Hayashi, K., Walde, P., Miyazaki, T., Sakayama, K., Nakamura, A., Kameda, K., Masuda, S., Umakoshi, H., & Kato, K. (2012). Active Targeting to Osteosarcoma Cells and Apoptotic Cell Death Induction by the Novel Lectin Eucheuma serra Agglutinin Isolated from a Marine Red Alga. Journal of Drug Delivery, 2012, 1–11. https://doi.org/10.1155/2012/842785. He, X., Yamauchi, A., Nakano, T., Yamaguchi, T., & Ochiai, Y. (2019). The composition and anti-inflammatory effect of polysaccharides from the red alga Chondrus verrucosus. Fisheries Science, 85(5), 859–865. https://doi.org/10.1007/s12562-019-01336-w. Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology, 23(3), 543–597. https://doi.org/10.1007/s10811-010- 9632-5. James, M. J., Gibson, R., & Cleland, L. G. (2000). Dietary polyunsaturated fatty acids and inflammatory mediator production. The American Journal of Clinical Nutrition, 71(1), 343S-348S. https://doi.org/10.1093/ajcn/71.1.343s. Jaswir, I., Tope, A. T., Raus, R. A., Hammed, A. M., & Ramli, N. (2014). Study on anti-bacterial potentials of some Malaysian brown seaweeds. Food Hydrocolloids, 42, 275–279. https://doi.org/10.1016/j.foodhyd.2014.03.008. JI, N. K., Kumar, R. N., Bora, A., Amb, M. K., & Chakraborthy, S. (1970). An Evaluation of the Pigment Composition of Eighteen Marine Surendran et al. JFBE 7(2): 51-68,2024 64 Macroalgae Collected from Okha Coast, Gulf of Kutch, India. Our Nature, 7(1), 48–55. https://doi.org/10.3126/on.v7i1.2553. Jiao, K., Gao, J., Zhou, T., Yu, J., Song, H., Wei, Y., & Gao, X. (2019). Isolation and purification of a novel antimicrobial peptide from Porphyra yezoensis. Journal of Food Biochemistry, 43(7). https://doi.org/10.1111/jfbc.12864. Kadam, S. U., Álvarez, C., Tiwari, B. K., & O’Donnell, C. P. (2017, September). Extraction and characterization of protein from Irish brown seaweed Ascophyllum nodosum. Food Research International, 99, 1021–1027. https://doi.org/10.1016/j.foodres.2016.07.018. Kadam, S. U., Tiwari, B. K., & O’Donnell, C. P. (2013). Application of Novel Extraction Technologies for Bioactives from Marine Algae. Journal of Agricultural and Food Chemistry, 61(20), 4667–4675. https://doi.org/10.1021/jf400819p. Kanatt, S R. (2023). Antioxidants from the red algae Kappaphycus alvarezii: In Mishra, P. K., Chatterjee, S., Gautam, R. K., Kakatkar, A. S., & Kumar, V. Marine algal carbohydrate and peptide antioxidants. In Elsevier eBooks (pp. 473–488). https://doi.org/10.1016/b978- 0-323-95086-2.00008-4. Karnjana, K., Soowannayan, C., & Wongprasert, K. (2019). Ethanolic extract of the red seaweed Gracilaria fisheri and furanone eradicate Vibrio harveyi and Vibrio parahaemolyticus biofilms and ameliorate the bacterial infection in shrimp. Fish & Shellfish Immunology, 88, 91–101. https://doi.org/10.1016/j.fsi.2019.01.058. Kasanah, N., Amelia, W., Mukminin, A., Triyanto, & Isnansetyo, A. (2018). Antibacterial activity of Indonesian red algae Gracilaria edulis against bacterial fish pathogens and characterization of active fractions. Natural Product Research, 33(22), 3303–3307. https://doi.org/10.1080/14786419.2018.1471079. Kazłowska, K., Hsu, T., Hou, C., Yang, W., & Tsai, G. (2010b). Antiinflammatory properties of phenolic compounds and crude extract from Porphyra dentata. Journal of Ethnopharmacology, 128(1), 123–130. https://doi.org/10.1016/j.jep.2009.12.037. Kellogg, J. J., Grace, M. H., & Lila, M. A. (2014). Phlorotannins from Alaskan Seaweed Inhibit Carbolytic Enzyme Activity. Marine Drugs, 12(10), 5277–5294. https://doi.org/10.3390/md12105277. Kendel, M., Wielgosz-Collin, G., Bertrand, S., Roussakis, C., Bourgougnon, N., &Bedoux, G. (2015, September 2). Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives. Marine Drugs, 13(9), 5606–5628. https://doi.org/10.3390/md13095606. Keyimu, X. G. (2013). The effects of using seaweed on the quality of Asian noodles. Journal of Food Processing and Technology, 04(03). https://doi.org/10.4172/2157-7110.1000216. Khalid, S., Abbas, M., Saeed, F., Bader-Ul-Ain, H., & Ansar Rasul Suleria, H. (2018). Therapeutic Potential of Seaweed Bioactive Compounds. Seaweed Biomaterials. IntechOpen. doi: 10.5772/intechopen.74060. Khan, M. N., Choi, J. S., Lee, M. C., Kim, E., Nam, T. J., Fujii, H., & Hong, Y. K. (2008). Anti-inflammatory activities of methanol extracts from various seaweed species. Journal of environmental biology, 29(4), 465–469. PMID: 19195382. Khanzada, A. K., Shaikh, W., Kazi, T., Kabir, S., & Soofia, Z. (2007). antifungal activity, elemental analysis and determination of total protein of seaweed, Solieria robusta (greville) kylin from the coast of karachi. Pakistan Journal of Botany, 39(3), 931–937. http://agris.fao.org/agrissearch/search.do?recordID=PK2007001317. Khanzada, A.K., Shaikh, W., Kazi, T.G., Kabir, S., & Soofia, Z. (2007). Antifungal activity, elemental analysis and determination of total protein of seaweed, Solieria robusta (Greville) Kylin from the coast of Karachi. Pak J Bot, 39, 931-937. Kim, E. Y., Kim, Y. R., Nam, T. J., & Kong, I. S. (2012). Antioxidant and DNA protection activities of a glycoprotein isolated from a seaweed, Saccharina japonica. International Journal of Food Science &Amp; Technology, 47(5), 1020–1027. https://doi.org/10.1111/j.1365-2621.2012.02936.x. Kim, K., Nam, K., Kurihara, H., & Kim, S. (2008). Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry, 69(16), 2820–2825. https://doi.org/10.1016/j.phytochem.2008.09.007. Kim, M. S., Kim, J. Y., Choi, W., & Lee, S. S. (2008). Effects of seaweed supplementation on blood glucose concentration, lipid profile, and antioxidant enzyme activities in patients with type 2 diabetes mellitus. Nutrition Research and Practice, 2(2), 62. https://doi.org/10.4162/nrp.2008.2.2.62. Kraan, S. (2013). Pigments and minor compounds in algae. In Elsevier eBooks (pp. 205–251). https://doi.org/10.1533/9780857098689.1.205. Kumagai, Y., Toji, K., Katsukura, S., Morikawa, R., Uji, T., Yasui, H., Shimizu, T., & Kishimura, H. (2021). Characterization of ACE Inhibitory Peptides Prepared from Pyropia pseudolinearis Protein. Marine Drugs, 19(4), 200. https://doi.org/10.3390/md19040200. Kumar, K. S., Ganesan, K., & Rao, P. V. (2008). Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty – An edible seaweed. Food Chemistry, 107(1), 289–295. https://doi.org/10.1016/j.foodchem.2007.08.016. Kumar, Y., Tarafdar, A., & Badgujar, P. C. (2021). Seaweed as a source of natural antioxidants: therapeutic activity and food applications. Journal of Food Quality, 2021, 1–17. https://doi.org/10.1155/2021/5753391. Kumoro, A.C., Johnny, D., & Alfilovita, D. (2016). Incorporation of microalgae and seaweed in instant fried wheat noodles manufacturing: nutrition and culinary properties study. international food research journal, 23, 715-722. Available in http://ifrj.upm.edu.my/23%20(02)%202016/(36).pdf. Lafeuille, B., Tamigneaux, É., Berger, K., Provencher, V., & Beaulieu, L. (2023). Variation of the Nutritional Composition and Bioactive Potential in Edible Macroalga Saccharina latissima Cultivated from Atlantic Canada Subjected to Different Growth and Processing Conditions. Foods, 12(8), 1736. https://doi.org/10.3390/foods12081736. Lawrence, K. P., Long, P. F., & Young, A. R. (2019). Mycosporine-Like amino acids for skin photoprotection. Current Medicinal Chemistry, 25(40), 5512–5527. https://doi.org/10.2174/0929867324666170529124237. Leal, M. C., Munro, M. H. G., Blunt, J. W., Puga, J., Jesus, B., Calado, R., Rosa, R., & Madeira, C. (2013). Biogeography and biodiscovery hotspots of macroalgal marine natural products. Natural Product Reports, 30(11), 1380. https://doi.org/10.1039/c3np70057g. Lee, D., Nishizawa, M., Shimizu, Y., & Saeki, H. (2017). Anti-inflammatory effects of dulse (Palmaria palmata) resulting from the simultaneous water-extraction of phycobiliproteins and chlorophyll a. Food Research International, 100, 514–521. https://doi.org/10.1016/j.foodres.2017.06.040. Lee, H., Dang, H., Kang, G., Yang, E. J., Park, S., Yoon, W., Jung, J. H., Kang, H., & Yoo, E. (2009). Two enone fatty acids isolated from Gracilaria verrucosa suppress the production of inflammatory mediators by down-regulating NF-κB and STAT1 activity in lipopolysaccharide-stimulated RAW 264.7 cells. Archives of Pharmacal Research, 32(3), 453–462. https://doi.org/10.1007/s12272-009-1320-0. Lee, Z. J., Xie, C., Ng, K., & Suleria, H. a. R. (2023). Unraveling the bioactive interplay: seaweed polysaccharide, polyphenol and their gut modulation effect. Critical Reviews in Food Science and Nutrition, 1–24. https://doi.org/10.1080/10408398.2023.2274453. Li, K., Li, X. M., Ji, N. Y., & Wang, B. (2007). Natural bromophenols from the marine red alga Polysiphonia urceolata (Rhodomelaceae): Structural elucidation and DPPH radical-scavenging activity. Bioorganic & Medicinal Chemistry, 15(21), 6627–6631. https://doi.org/10.1016/j.bmc.2007.08.023. Lim, P., Yang, L., Tan, J., Maggs, C. A., & Brodie, J. (2017). Advancing the taxonomy of economically important red seaweeds (Rhodophyta). Surendran et al. JFBE 7(2): 51-68,2024 65 European Journal of Phycology, 52(4), 438–451. https://doi.org/10.1080/09670262.2017.1365174. Ling, A. L. M., Yasir, S. M., Matanjun, P., & Bakar, M. F. A. (2014). Effect of different drying techniques on the phytochemical content and antioxidant activity of Kappaphycus alvarezii. Journal of Applied Phycology, 27(4), 1717–1723. https://doi.org/10.1007/s10811- 014-0467-3. Lomartire, S., & Gonçalves, A. M. M. (2022). An overview of potential Seaweed-Derived bioactive Compounds for pharmaceutical applications. Marine Drugs, 20(2), 141. https://doi.org/10.3390/md20020141. Lopes, D., Rey, F., Leal, M. C., Lillebø, A. I., Calado, R., & Domingues, R. M. (2021). Bioactivities of Lipid Extracts and Complex Lipids from Seaweeds: Current Knowledge and Future Prospects. Marine Drugs, 19(12), 686. https://doi.org/10.3390/md19120686. Lozano‐Muñoz, I., & Díaz, N. F. (2020). Minerals in edible seaweed: health benefits and food safety issues. Critical Reviews in Food Science and Nutrition, 62(6), 1592–1607. https://doi.org/10.1080/10408398.2020.1844637. Machu, L., Misurcova, L., Ambrozova, J. V., Orsavova, J., Mlcek, J., Sochor, J., & JuríKova, T. (2015). Phenolic content and antioxidant capacity in algal food products. Molecules, 20(1), 1118–1133. https://doi.org/10.3390/molecules20011118. Makkar, F., & Chakraborty, K. (2016). Antidiabetic and anti-inflammatory potential of sulphated polygalactans from red seaweeds Kappaphycus alvarezii and Gracilaria opuntia. International Journal of Food Properties, 20(6), 1326–1337. https://doi.org/10.1080/10942912.2016.1209216. Makkar, F., & Chakraborty, K. (2017). Antioxidative sulphated polygalactans from marine macroalgae as angiotensin-I converting enzyme inhibitors. Natural Product Research, 32(17), 2100–2106. https://doi.org/10.1080/14786419.2017.1363756. Makkar, F., & Chakraborty, K. (2018). Antioxidant and anti-inflammatory oxygenated meroterpenoids from the thalli of red seaweed Kappaphycus alvarezii. Medicinal Chemistry Research, 27(8), 2016–2026. https://doi.org/10.1007/s00044-018-2210-0. Makkar, H. P. S., Tran, G., Heuze, V., Giger-Reverdin, S.,Lessire, M., Lebas, F., &Ankers, P. (2016). Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212, 1 17. https://doi.org/10.1016/j.anifeedsci.2015.09.018. Manivasagan, P., Bharathiraja, S., Moorthy, M. S., Mondal, S., Seo, H., Lee, K. D., & Oh, J. (2017). Marine natural pigments as potential sources for therapeutic applications. Critical Reviews in Biotechnology, 38(5), 745–761. https://doi.org/10.1080/07388551.2017.1398713. Marburger, A. (2003). Alginate und Carrageenane? Eigenschaften, Gewinnung und Anwendungen in Schule und Hochschule. Philipps-Universität Marburg. https://doi.org/10.17192/z2004.0110. Marinho, G. S., Holdt, S. L., & Angelidaki, I. (2015). Seasonal variations in the amino acid profile and protein nutritional value of Saccharina latissima cultivated in a commercial IMTA system. Journal of Applied Phycology, 27(5), 1991–2000. https://doi.org/10.1007/s10811-015-0546-0. Matanjun, P., Mohamed, S., Muhammad, K., & Noordin, M. M. (2010). Comparison of Cardiovascular Protective Effects of Tropical Seaweeds, Kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on High-Cholesterol/High-Fat Diet in Rats. Journal of Medicinal Food, 13(4), 792–800. https://doi.org/10.1089/jmf.2008.1212. McKim, J. M., Baas, H., Rice, G. P., Willoughby, J. A., Weiner, M. L., & Blakemore, W. R. (2016). Effects of carrageenan on cell permeability, cytotoxicity, and cytokine gene expression in human intestinal and hepatic cell lines. Food and Chemical Toxicology, 96, 1–10. https://doi.org/10.1016/j.fct.2016.07.006. Milinovic, J., Mata, P., Diniz, M., Noronha, J.P., 2021. Umami taste in edible sea-weeds: The current comprehension and perception. Int. J Gastron. Food Sci. 23. doi: 10.1016/j.ijgfs.2020.100301. Mohamed, S., Hashim, S. N., & Rahman, H. A. (2012). Seaweeds: A sustainable functional food for complementary and alternative therapy. Trends in Food Science and Technology, 23(2), 83–96. https://doi.org/10.1016/j.tifs.2011.09.001. Mohammadigheisar, M., Shouldice, V. L., Sands, J. S., Lepp, D., Diarra, M. S., & Kiarie, E. (2020). Growth performance, breast yield, gastrointestinal ecology and plasma biochemical profile in broiler chickens fed multiple doses of a blend of red, brown and green seaweeds. British Poultry Science, 61(5), 590–598. https://doi.org/10.1080/00071668.2020.1774512. Mojzer, E. B., Chen, L., S̆Kerget, M., Knez, Ž., & Bren, U. (2016). Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 21(7), 901. https://doi.org/10.3390/molecules21070901. Moussavou, G., Kwak, D. H., Obiang-Obonou, B. W., Maranguy, C. a. O., Dinzouna-Boutamba, S., Lee, D. H., Pissibanganga, O. G. M., Ko, K., Seo, J. I., & Choo, Y. (2014). Anticancer effects of different seaweeds on human colon and breast cancers. Marine Drugs, 12(9), 4898–4911. https://doi.org/10.3390/md12094898. Murray, M., Dordevic, A. L., Ryan, L., & Bonham, M. P. (2018). The impact of a single dose of a Polyphenol-Rich seaweed extract on postprandial glycaemic control in healthy adults: a randomised Cross-Over trial. Nutrients, 10(3), 270. https://doi.org/10.3390/nu10030270. Nakhate, P. H., & Van Der Meer, Y. (2021). A Systematic Review on Seaweed Functionality: A Sustainable Bio-Based Material. Sustainability, 13(11), 6174. https://doi.org/10.3390/su13116174. Namvar, F., Mohamed, S., Fard, S. G., Behravan, J., Mustapha, N. M., Alitheen, N. B. M., & Othman, F. (2012). Polyphenol-rich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction. Food Chemistry, 130(2), 376–382. https://doi.org/10.1016/j.foodchem.2011.07.054. Ngo, D., Wijesekara, I., Vo, T., Van Ta, Q., & Kim, S. (2011). Marine foodderived functional ingredients as potential antioxidants in the food industry: An overview. Food Research International, 44(2), 523– 529. https://doi.org/10.1016/j.foodres.2010.12.030. Nishinari, K., & Fang, Y. (2017). Relation between structure and rheological/thermal properties of agar. A mini-review on the effect of alkali treatment and the role of agaropectin. Food Structure, 13, 24–34. https://doi.org/10.1016/j.foostr.2016.10.003. O’Sullivan, A. M., O’Callaghan, Y. C., O’Grady, M. N., Waldron, D. S., Smyth, T. J., O’Brien, N. M., & Kerry, J. P. (2014). An examination of the potential of seaweed extracts as functional ingredients in milk. International Journal of Dairy Technology, 67(2), 182–193. https://doi.org/10.1111/1471-0307.12121. Onofrejová , L., Vašíčková, J., Klejdus, B., Stratil, P., Mišurcová, L., Kráčmar, S., Kopecký, J., & Vacek, J. (2010b). Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 464–470. https://doi.org/10.1016/j.jpba.2009.03.027. Ortíz, J., Romero, N., Robert, P., Araya, J. E., López-Hernández, J., Bozzo, C. P., Navarrete, E., Osorio, A., & De Oliveira Rios, A. (2006). Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99(1), 98–104. https://doi.org/10.1016/j.foodchem.2005.07.027. Osman, M.E.H.; Abushady, A.M.; Elshobary, M.E.(2010). In vitro screening of antimicrobial activity of extracts of some macroalgae collected from Abu-Qir bay Alexandria, Egypt. Afr. J. Biotechnol.9, 7203– 7208. Otero, P., Carpena, M., Garcia‐Oliveira, P., Echave, J., Soria-López, A., García-Pérez, P., Fraga-Corral, M., Cao, H., Nie, S., Xiao, J., Simal-Gándara, J., & Prieto, M. A. (2021). Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Critical Reviews in Food Science and Nutrition, 63(13), 1901–1929. https://doi.org/10.1080/10408398.2021.1969534. Othman, R., NA, A., MSA, S., NA, F., & A, J. M. (2018). Carotenoid and chlorophyll profiles in five species of Malaysian seaweed as Surendran et al. JFBE 7(2): 51-68,2024 66 potential Halal Active Pharmaceutical Ingredient (API). International Journal on Advanced Science, Engineering and Information Technology, 8(4–2), 1610. https://doi.org/10.18517/ijaseit.8.4-2.7041. Padam, B. S., &Chye, F. Y. (2020). Seaweed components, properties, and applications. Sustainable Seaweed Technologies, 33–87. https://doi.org/10.1016/b978-0-12-817943-7.00002-0. Palani, K., Balasubramanian, B., Malaisamy, A., Maluventhen, V., Anand, A. V., Al‐Dhabi, N. A., Arasu, M. V., Pushparaj, K., Liu, W., & Maruthupandian, A. (2022). Sulfated Polysaccharides Derived from Hypnea valentiae and Their Potential of Antioxidant, Antimicrobial, and Anticoagulant Activities with In Silico Docking. Evidence-based Complementary and Alternative Medicine, 2022, 1–15. https://doi.org/10.1155/2022/3715806. Pangestuti, R., Siahaan, E. A., & Kim, S. (2018). Photoprotective Substances Derived from Marine Algae. Marine Drugs, 16(11), 399. https://doi.org/10.3390/md16110399. Paniagua‐Michel, J., Olmos-Soto, J., & Morales-Guerrero, E. (2014). Algal and microbial exopolysaccharides. In Advances in food and nutrition research (pp. 221–257). https://doi.org/10.1016/b978-0- 12-800268-1.00011-1. Pati, M. P., Sharma, S. D., Nayak, L., & Panda, C. R. (2016). USES OF SEAWEED AND ITS APPLICATION TO HUMAN WELFARE: a REVIEW. International Journal of Pharmacy and Pharmaceutical Sciences, 8(10), 12. https://doi.org/10.22159/ijpps.2016v8i10.12740. Pereira, L. (2018). Therapeutic and nutritional uses of algae. In CRC Press eBooks. https://doi.org/10.1201/9781315152844. Pereira, L., & Critchley, A. T. (2020). The COVID-19 novel coronavirus pandemic 2020: seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times? Journal of Applied Phycology, 32(3), 1875–1877. https://doi.org/10.1007/s10811- 020-02143-y. Plaza, M., Cifuentes, A., & Ibáñez, E. (2008). In the search for new functional food ingredients from algae. Trends in Food Science and Technology, 19(1), 31–39. https://doi.org/10.1016/j.tifs.2007.07.012. Popa, E. G., Reis, R. L., & Gomes, M. E. (2012). The chondrogenic phenotype of different cells encapsulated in κ‐carrageenan hydrogels for cartilage regeneration strategies. Biotechnology and Applied Biochemistry, 59(2), 132–141. https://doi.org/10.1002/bab.1007. Porse, H., & Rudolph, B. (2017). The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. Journal of Applied Phycology, 29(5), 2187–2200. https://doi.org/10.1007/s10811- 017-1144-0. Prabhasankar, P., Ganesan, P., Bhaskar, N., Hirose, A., Stephen, N., Gowda, L. R., Hosokawa, M., & Miyashita, K. (2009). Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation. Food Chemistry, 115(2), 501–508. https://doi.org/10.1016/j.foodchem.2008.12.047. Prasasty, V. D., Haryani, B., Hutagalung, R. A., Mulyono, N., Yazid, F., Rosmalena, R., & Sinaga, E. (2019). Evaluation of Antioxidant and Antidiabetic Activities from Red Seaweed (Eucheuma cottonii). Systematic Reviews in Pharmacy, 10(1), 276–288. https://www.bibliomed.org/?mno=302644999. Pushparaj, A. (2014). Antibacterial activity of Kappaphycus alvarezii and Ulva lactuca extracts against human pathogenic bacteria. Int. J. Curr. Microbiol. Appl. Sci. 3(1): 432-436. https://www.ijcmas.com/vol-3-1/A.Pushparaj,%20et%20al.pdf. Qin, Y. (2018). Applications of bioactive seaweed substances in functional food products. In Elsevier eBooks (pp. 111–134). https://doi.org/10.1016/b978-0-12-813312-5.00006-6. Qin, Y. (2018). Seaweed Hydrocolloids as Thickening, Gelling, and Emulsifying Agents in Functional Food Products. Bioactive Seaweeds for Food Applications, 135–152. https://doi.org/10.1016/b978-0-12-813312-5.00007-8. Quitral, V., Sepúlveda, M., Gamero-Vega, G., & Jiménez, P. (2022). Seaweeds in bakery and farinaceous foods: A mini-review. International Journal of Gastronomy and Food Science, 28, 100403. https://doi.org/10.1016/j.ijgfs.2021.100403. Rajauria, G., Jaiswal, A. K., Abu-Gannam, N., & Gupta, S. (2012). Antimicrobial, antioxidant and free radical-scavenging capacity of brown seaweed Himanthalia elongata from the western coast of Ireland. Journal of Food Biochemistry, 37(3), 322–335. https://doi.org/10.1111/j.1745-4514.2012.00663.x. Rathore, S., Chaudhary, D. R., Boricha, G., Ghosh, A., Bhatt, B., Zodape, S. T., & Patolia, J. S. (2009). Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. South African Journal of Botany, 75(2), 351– 355. https://doi.org/10.1016/j.sajb.2008.10.009. Rawiwan, P., Peng, Y., Paramayuda, I. G. P. B., & Quek, S. Y. (2022). Red seaweed: A promising alternative protein source for global food sustainability. Trends in Food Science & Technology, 123, 37–56. https://doi.org/10.1016/j.tifs.2022.03.003. Rioux, L., & Turgeon, S. L. (2015). Seaweed carbohydrates. In Elsevier eBooks (pp. 141–192). https://doi.org/10.1016/b978-0-12- 418697-2.00007-6. Rodriguez–Amaya, D. B. (2016). Natural food pigments and colorants. Current Opinion in Food Science, 7, 20–26. https://doi.org/10.1016/j.cofs.2015.08.004. Ryu, B., Kim, Y., & Jeon, Y. (2021). Seaweeds and their natural products for preventing cardiovascular-associated dysfunction. Marine Drugs, 19(9), 507. https://doi.org/10.3390/md19090507. Samarathunga, J., Wijesekara, I., & Jayasinghe, M. (2022). Seaweed proteins as a novel protein alternative: Types, extractions, and functional food applications. Food Reviews International, 39(7), 4236– 4261. https://doi.org/10.1080/87559129.2021.2023564. Sánchez-Machado, D. I., López-Hernández, J., Paseiro-Losada, P., & LópezCervantes, J. (2004). An HPLC method for the quantification of sterols in edible seaweeds. Biomedical Chromatography, 18(3), 183–190. https://doi.org/10.1002/bmc.316. Santo, V. E., Frias, A. M., Caridà, M., Cancedda, R., Gomes, M. E., Mano, J. F., & Reis, R. L. (2009). Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules, 10(6), 1392–1401. https://doi.org/10.1021/bm8014973. Sathuvan, M., Muthu, S., Gopal, V. B., Palani, P., & Rengasamy, R. (2016). Qualitative and quantitative determination of R-phycoerythrin from Halymenia floresia (Clemente) C. Agardh by polyacrylamide gel using electrophoretic elution technique. Journal of Chromatography A, 1454, 120–126. https://doi.org/10.1016/j.chroma.2016.05.063. Schmid, M., Kraft, L. G. K., van der Loos, L. M., Kraft, G. T., Virtue, P., Nichols, P. D., & Hurd, C. L. (2018). Southern Australian seaweeds: A promising resource for omega-3 fatty acids. Food Chemistry, 265, 70-77. https://doi.org/10.1016/j.foodchem.2018.05.060. Sekar, S., & Chandramohan, M. (2007). Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. Journal of Applied Phycology, 20(2), 113–136. https://doi.org/10.1007/s10811-007-9188-1. Sellimi, S., Kadri, N., Barragan‐Montero, V., Laouer, H., Hajji, M., & Nasri, M. (2014). Fucans from a Tunisian brown seaweed Cystoseira barbata: Structural characteristics and antioxidant activity. International Journal of Biological Macromolecules, 66, 281– 288. https://doi.org/10.1016/j.ijbiomac.2014.02.041. Senthil, A., Mamatha, B. S., Vishwanath, P., Bhat, K., & Ravishankar, G. A. (2010). Studies on the development and storage stability of instant spice adjunct mix from seaweed (Eucheuma). Journal of Food Science and Technology, 48(6), 712–717. https://doi.org/10.1007/s13197-010-0165-3. Shahnaz, L., & Shameel, M. (2009). Chemical composition and bioactivity of some benthic algae from Karachi Coast of Pakistan. International Journal on Algae, 11(4), 377–393. https://doi.org/10.1615/interjalgae.v11.i4.70. Shan, X., Liu, X., Hao, J., Cai, C., Fan, F., Dun, Y., Zhao, X., Liu, X., & Li, Surendran et al. JFBE 7(2): 51-68,2024 67 C. (2016). In vitro and in vivo hypoglycemic effects of brown algal fucoidans. International Journal of Biological Macromolecules, 82, 249–255. https://doi.org/10.1016/j.ijbiomac.2015.11.036. Shannon, E., & Abu‐Ghannam, N. (2016). Antibacterial derivatives of Marine Algae: An Overview of pharmacological mechanisms and applications. Marine Drugs, 14(4), 81. https://doi.org/10.3390/md14040081. Shannon, E., & Abu‐Ghannam, N. (2019). Seaweeds as nutraceuticals for health and nutrition. Phycologia, 58(5), 563–577. https://doi.org/10.1080/00318884.2019.1640533. Shao, Z., & Duan, D. (2022). The cell wall polysaccharides Biosynthesis in Seaweeds: A Molecular perspective. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.902823. Shin, E., Hwang, H., Kim, I., & Nam, T. (2011). A glycoprotein from Porphyra yezoensis produces anti-inflammatory effects in liposaccharide-stimulated macrophages via the TLR4 signaling pathway. International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.2011.729. Shu-Hong, Z. (2011). An experimental study on the hypoglycemic effect of Agar polysaccharide in diabetic rats. Health Medicine Research and Practice. https://en.cnki.com.cn/Article_en/CJFDTOTALGXBJ201104004.htm. Simopoulos, A. P. (2008). The importance of the Omega-6/Omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine, 233(6), 674–688. https://doi.org/10.3181/0711-mr-311. Sonani, R. R., Rastogi, R. P., Patel, R., & Madamwar, D. (2016). Recent advances in production, purification and applications of phycobiliproteins. World Journal of Biological Chemistry, 7(1), 100. https://doi.org/10.4331/wjbc.v7.i1.100. Souza, R. B., Frota, A. F., Silva, J., Alves, C., Neugebauer, A., Pintéus, S., Rodrigues, J. a. G., Cordeiro, E. M. S., De Almeida, R. R., Pedrosa, R., & Benevídes, N. M. B. (2018). In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: Antimicrobial, anticancer and neuroprotective potential. International Journal of Biological Macromolecules, 112, 1248–1256. https://doi.org/10.1016/j.ijbiomac.2018.02.029. Stahl, W., Heinrich, U., Jungmann, H., Sies, H., & Tronnier, H. (2000). Carotenoids and carotenoids plus vitamin E protect against ultraviolet light-induced erythema in humans. The American Journal of Clinical Nutrition, 71(3), 795–798. https://doi.org/10.1093/ajcn/71.3.795. Stiger‐Pouvreau, V., Bourgougnon, N., & Deslandes, É. (2016). Carbohydrates from seaweeds. In Elsevier eBooks (pp. 223–274). https://doi.org/10.1016/b978-0-12-802772-1.00008-7. Su, Y., Liao, H., & Yang, J. (2022). Purification and Identification of an ACE-Inhibitory Peptide from Gracilaria tenuistipitata Protein Hydrolysates. Processes, 10(6), 1128. https://doi.org/10.3390/pr10061128. Subbiah, V., Xie, C., Dunshea, F. R., Barrow, C. J., & Suleria, H. a. R. (2022). The Quest for Phenolic Compounds from Seaweed: Nutrition, Biological Activities and Applications. Food Reviews International, 39(8), 5786–5813. https://doi.org/10.1080/87559129.2022.2094406. Sudhakar, K., Mamat, R., Samykano, M., Azmi, W., Ishak, W. M. F. W., & Yusaf, T. (2018). An overview of marine macroalgae as bioresource. Renewable & Sustainable Energy Reviews, 91, 165– 179. https://doi.org/10.1016/j.rser.2018.03.100. Sun, Y., Zhang, N., Zhou, J., Dong, S., Zhang, X., Guo, L., & Guo, G. (2020). Distribution, Contents, and Types of Mycosporine-Like Amino Acids (MAAs) in Marine Macroalgae and a Database for MAAs Based on These Characteristics. Marine Drugs, 18(1), 43. https://doi.org/10.3390/md18010043. Tabarsa, M., You, S. H., Dabaghian, E. H., & Surayot, U. (2018). Watersoluble polysaccharides from Ulva intestinalis : Molecular properties, structural elucidation and immunomodulatory activities. Journal of Food and Drug Analysis, 26(2), 599–608. https://doi.org/10.1016/j.jfda.2017.07.016. Tanna, B., & Mishra, A. (2019). Nutraceutical potential of seaweed polysaccharides: structure, bioactivity, safety, and toxicity. Comprehensive Reviews in Food Science and Food Safety, 18(3), 817–831. https://doi.org/10.1111/1541-4337.12441. Thanigaivel, S., Vidhya Hindu, S., Vijayakumar, S., Mukherjee, A., Chandrasekaran, N., & Thomas, J. (2015). Differential solvent extraction of two seaweeds and their efficacy in controlling Aeromonas salmonicida infection in Oreochromis mossambicus: A novel therapeutic approach. Aquaculture, 443, 56–64. https://doi.org/10.1016/j.aquaculture.2015.03.010. Thiviya, P., Gamage, A., Gama-Arachchige, N. S., Merah, O., & Madhujith, T. (2022). Seaweeds as a source of functional proteins. Phycology, 2(2), 216–243. https://doi.org/10.3390/phycology2020012. Tiwari, B. K., & Troy, D. J. (2015). Seaweed sustainability – food and nonfood applications. In Elsevier eBooks (pp. 1–6). https://doi.org/10.1016/b978-0-12-418697-2.00001-5. Torres, M. D., Flórez‐Fernández, N., & Domı́Nguez, H. (2019). Integral utilization of red seaweed for bioactive production. Marine Drugs, 17(6), 314. https://doi.org/10.3390/md17060314. Tsuge, K., Okabe, M., Yoshimura, T., Sumi, T., Tachibana, H., & Yamada, K. (2004). Dietary Effects of Porphyran from Porphyra yezoensis on Growth and Lipid Metabolism of Sprague-Dawley Rats. Food Science and Technology Research, 10(2), 147–151. https://doi.org/10.3136/fstr.10.147. Unger, T. (2002). The role of the renin-angiotensin system in the development of cardiovascular disease. The American Journal of Cardiology, 89(2), 3–9. https://doi.org/10.1016/s0002- 9149(01)02321-9. Van Netten, C., Cann, S. a. H., Morley, D. R., & Van Netten, J. P. (2000). Elemental and radioactive analysis of commercially available seaweed. Sci Total Environ, 255(1–3), 169–175. https://doi.org/10.1016/s0048-9697(00)00467-8. Vijay, K., Balasundari, S., Jeyashakila, R., Velayathum, P., Masilan, K., & Reshma, R. (2017). Proximate and mineral composition of brown seaweed from the Gulf of Mannar. International Journal of Fisheries and Aquatic Studies, 5(5), 106-112. Wang GC, Sun HB, Fan X, Tseng CK (2002) Large-scale isolation and purification of R-phycoerythrin from red alga Palmaria palmata using the expanded bed adsorption method. Acta Bot Sin 44:541– 546. Wang, L., Wang, S., Fu, X., & Sun, L. (2015). Characteristics of an RPhycoerythrin with Two γ Subunits Prepared from Red Macroalga Polysiphonia urceolata. PLOS ONE, 10(3), e0120333. https://doi.org/10.1371/journal.pone.0120333. Wang, T., Jónsdóttir, R., Kristinsson, H. G., Hreggviðsson, G. Ó., Jónsson, J. Ó., Þorkelsson, G., & Ólafsdóttir, G. (2010). Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. LWT, 43(9), 1387–1393. https://doi.org/10.1016/j.lwt.2010.05.010. Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., Smith, A. G., Camire, M. E., & Brawley, S. H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of applied phycology, 29, 949–982. https://doi.org/10.1007/s10811-016-0974-5. Winarni Agustini, T., Farid Ma’ruf, W., Widayat, W., Suzery, M., Hadiyanto, H., & Benjakul, S. (2016). Application of spirulina platensis on ice cream and soft cheese concerning their nutritional and sensory perspectives. Jurnal Teknologi, 78(4–2). https://doi.org/10.11113/jt.v78.8216. Woo, M., Choi, H., Lee, O., & Lee, B. (2012). The Edible red Alga, Gracilaria verrucosa, Inhibits Lipid Accumulation and ROS Production but Improves Glucose Uptake in 3T3‐L1 Cells. Phytotherapy Research, 27(7), 1102–1105. https://doi.org/10.1002/ptr.4813. Yang, T., Yao, H., & Chiang, M. (2015). Red algae (Gelidium amansii) reduces adiposity via activation of lipolysis in rats with diabetes induced by streptozotocin-nicotinamide. J Food Drug Anal, 23(4), 758–765. https://doi.org/10.1016/j.jfda.2015.06.003. Yabuta, Y., Fujimura, H., Kwak, C. S., Enomoto, T., & Watanabe, F. (2010). Antioxidant Activity of the Phycoerythrobilin Compound Formed Surendran et al. JFBE 7(2): 51-68,2024 68 from a Dried Korean Purple Laver (Porphyra sp.) during in Vitro Digestion. Food Science and Technology Research, 16(4), 347– 352. https://doi.org/10.3136/fstr.16.347. Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Filipič, M., Frutos, M. J., Galtier, P., Gott, D. M., Gundert‐Remy, U., Kuhnle, G. G., Lambré, C., Leblanc, J., Lillegaard, I. T. L., Moldéus, P., Mortensen, A., Oskarsson, A., Stanković, I., Waalkens‐ Berendsen, I., Woutersen, R. A., . . . Dusemund, B. (2018). Re‐ evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA Journal, 16(4). https://doi.org/10.2903/j.efsa.2018.5238. Yu, P., Wu, Y., Wang, G., Jia, T., & Zhang, Y. (2016). Purification and bioactivities of phycocyanin. Critical Reviews in Food Science and Nutrition, 57(18), 3840–3849. https://doi.org/10.1080/10408398.2016.1167668. Yuan, H., Song, J., Zhang, W., Li, X., Li, N., & Gao, X. (2006). Antioxidant activity and cytoprotective effect of κ-carrageenan oligosaccharides and their different derivatives. Bioorganic & Medicinal Chemistry Letters, 16(5), 1329–1334. https://doi.org/10.1016/j.bmcl.2005.11.057. Yuan, Y., Carrington, M. F., & Walsh, N. (2005). Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food and Chemical Toxicology, 43(7), 1073–1081. https://doi.org/10.1016/j.fct.2005.02.012. Zava, T., & Zava, D. T. (2011). Assessment of Japanese iodine intake based on seaweed consumption in Japan: A literature-based analysis. Thyroid Research, 4(1), 14. https://doi.org/10.1186/1756-6614-4- 14. Zhou, C., Yu, X., Zhang, Y., He, R., & Ma, H. (2012). Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea. Carbohydrate Polymers, 87(3), 2046–2051. https://doi.org/10.1016/j.carbpol.2011.10.026. | ||
آمار تعداد مشاهده مقاله: 143 تعداد دریافت فایل اصل مقاله: 88 |