REFERENCES
Adhami, B., Amirkolaei, A. K., Oraji, H., Kazemifard, M., & Mahjoub, S. (2021). Effects of lysophospholipid on rainbow trout (Oncorhynchus mykiss) growth, biochemical indices, nutrient digestibility and liver histomorphometry when fed fat powder diet. Aquaculture Nutrition, 27(6), 1779-1788.
|
Al-Jebory, H. H., Qotbi, A. A. A., Al-Saeedi, M. K. I., Al-Khfaji, F. R., Ajafar, M., & Safaei, A. (2023). Biological activity of Lysophospholipids in poultry and ruminants: A review.
Arouri, A., & Mouritsen, O. G. (2013). Membrane-perturbing effect of fatty acids and lysolipids. Progress in lipid research, 52(1), 130-140
|
Birgbauer, E., & Chun, J. (2006). New developments in the biological functions of lysophospholipids. Cellular and Molecular Life Sciences CMLS, 63, 2695-2701.
Brautigan, D. L., Li, R., Kubicka, E., Turner, S. D., Garcia, J. S., Weintraut, M. L., & Wong, E. A. (2017). Lysolecithin as feed additive enhances collagen expression and villus length in the jejunum of broiler chickens. Poultry Science, 96(8), 2889-2898.
|
Che, M., Lu, Z., Liu, L., Li, N., Ren, L., & Chi, S. (2023). Dietary lysophospholipids improves growth performance and hepatic lipid metabolism of largemouth bass (Micropterus salmoides). Animal Nutrition, 13, 426-434.
|
Chen, C., Jung, B., & Kim, W. K. (2019). Effects of lysophospholipid on growth performance, carcass yield, intestinal development, and bone quality in broilers. Poultry Science, 98(9), 3902-3913.
|
Chen, X., Wang, Q., Guo, Z., Zhao, Y., Gao, Y., Yu, T., ... & Wang, G. (2019). Effects of dietary oxidized fish oil on growth performance and antioxidant defense mechanism of juvenile Rhynchocypris lagowski Dybowski. Aquaculture, 512, 734368.
|
De Souza, J., Westerrn, M., & Lock, A. L. (2020). Abomasal infusion of an exogenous emulsifier improves fatty acid digestibility and milk fat yield of lactating dairy cows. Journal of Dairy science, 103(7), 6167-6177.
|
Edwards‐Webb, J. D. (1983). Digestive lipolysis in the preruminant calf. The abomasal hydrolysis of butter oil, coconut oil, palm oil and tallow. Journal of the Science of Food and Agriculture, 34(9), 930-936.
|
Egli, C. P., & Blum, J. W. (1998). Clinical, haematological, metabolic and endocrine traits during the first three months of life of suckling simmentaler calves held in a cow‐calf operation 1. Journal of Veterinary Medicine Series A, 45(1‐10), 99-118.
|
Ghasemi, E., Azad-Shahraki, M., & Khorvash, M. (2017). Effect of different fat supplements on performance of dairy calves during cold season. Journal of Dairy science, 100(7), 5319-5328.
|
Ghorbani, H., Kazemi-Bonchenari, M., HosseinYazdi, M., & Mahjoubi, E. (2020). Effects of various fat delivery methods in starter diet on growth performance, nutrients digestibility and blood metabolites of Holstein dairy calves. Animal Feed Science and Technology, 262, 114429.
|
Haetinger, V. S., Dalmoro, Y. K., Godoy, G. L., Lang, M. B., De Souza, O. F., Aristimunha, P., & Stefanello, C. (2021). Optimizing cost, growth performance, and nutrient absorption with a bio-emulsifier based on lysophospholipids for broiler chickens. Poultry Science, 100(4), 101025.
|
Hill, T. M., Bateman II, H. G., Aldrich, J. M., Quigley, J. D., & Schlotterbeck, R. L. (2015). Inclusion of tallow and soybean oil to calf starters fed to dairy calves from birth to four months of age on calf performance and digestion. Journal of Dairy science, 98(7), 4882-4888.
Hasenhuettl, G. L., & Hartel, R. W. (Eds.). (2008). Food emulsifiers and their applications (Vol. 19, pp. 11-37). New York: Springer.
|
Huang, J., Yang, D., & Wang, T. (2007). Effects of replacing soy-oil with soy-lecithin on growth performance, nutrient utilization and serum parameters of broilers fed corn-based diets. Asian Australasian Journal of Animal Sciences, 20(12), 1880.
|
Huo, Q., Li, B., Cheng, L., Wu, T., You, P., Shen, S., ... & Sun, X. (2019). Dietary supplementation of lysophospholipids affects feed digestion in lambs. Animals, 9(10), 805.
|
Ibarz, A., Sanahuja, I., Nuez-Ortín, W. G., Martínez-Rubio, L., & Fernández-Alacid, L. (2023). Physiological Benefits of Dietary Lysophospholipid Supplementation in a Marine Fish Model: Deep Analyses of Modes of Action. Animals, 13(8), 1381.
|
Jansen, M., Nuyens, F., Buyse, J., Leleu, S., & Van Campenhout, L. (2015). Interaction between fat type and lysolecithin supplementation in broiler feeds. Poultry Science, 94(10), 2506-2515.
|
Jenkins, T. C., Gimenez, T., & Cross, D. L. (1989). Influence of phospholipids on ruminal fermentation in vitro and on nutrient digestion and serum lipids in sheep. Journal of Animal science, 67(2), 529-537.
|
Jones, C., and J. Heinrichs. 2017. Feeding the newborn dairy calf. Pennsylvania State University Cooperative Extension.
|
Karimi, A., Alijoo, Y. A., Kazemi-Bonchenari, M., Mirzaei, M., & Sadri, H. (2021). Effects of supplemental fat sources and forage feeding levels on growth performance, nutrient digestibility, ruminal fermentation, and nitrogen utilization in dairy calves. Animal, 15(4), 100179.
|
Kazemi-Bonchenari, M., Dehghan-Banadaky, M., Fattahnia, F., Saleh-Bahmanpour, A., Jahani-Moghadam, M., & Mirzaei, M. (2020). Effects of linseed oil and rumen undegradable protein: rumen degradable protein ratio on performance of Holstein dairy calves. British Journal of Nutrition, 123(11), 1247-1257.
|
Kertz, A. F., Hill, T. M., Quigley Iii, J. D., Heinrichs, A. J., Linn, J. G., & Drackley, J. K. (2017). A 100-Year Review: Calf nutrition and management. Journal of Dairy science, 100(12), 10151-10172.
|
Khan, M. A., Bach, A., Weary, D. M., & Von Keyserlingk, M. A. G. (2016). Invited review: Transitioning from milk to solid feed in dairy heifers. Journal of Dairy science, 99(2), 885-902.
|
Kim, H., Kim, B., Cho, S., Kwon, I., & Seo, J. (2020). Dietary lysophospholipids supplementation inhibited the activity of lipolytic bacteria in forage with high oil diet: an in vitro study. Asian-Australasian Journal of Animal Sciences, 33(10), 1590.
|
Kinh, L. V., Vasanthakumari, B. L., Sugumar, C., Thanh, H. L. T., Thanh, N. V., Wealleans, A. L., ... & Loan, N. V. T. H. (2022). Effect of a Combination of Lysolecithin, Synthetic Emulsifier and Monoglycerides on the Apparent Ileal Digestibility, Metabolizable Energy and Growth Performance of Growing Pigs. Animals, 13(1), 88.
|
Lee, C., Morris, D. L., Copelin, J. E., Hettick, J. M., & Kwon, I. H. (2019). Effects of lysophospholipids on short-term production, nitrogen utilization, and rumen fermentation and bacterial population in lactating dairy cows. Journal of Dairy science, 102(4), 3110-3120.
|
Lesmeister, K. E., & Heinrichs, A. J. (2005). Effects of adding extra molasses to a texturized calf starter on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. Journal of Dairy science, 88(1), 411-418.
|
Li, B., Li, Z., Sun, Y., Wang, S., Huang, B., & Wang, J. (2019). Effects of dietary lysolecithin (LPC) on growth, apparent digestibility of nutrient and lipid metabolism in juvenile turbot Scophthalmus maximus L. Aquaculture and Fisheries, 4(2), 61-66.
|
Li, S., Luo, X., Liao, Z., Liang, M., Xu, H., Mai, K., & Zhang, Y. (2022). Effects of lysophosphatidylcholine on intestinal health of turbot fed high-lipid diets. Nutrients, 14(20), 4398.
|
Lu, Z., Yao, C., Tan, B., Dong, X., Yang, Q., Liu, H., ... & Chi, S. (2022). Effects of Lysophospholipid Supplementation in Feed with Low Protein or Lipid on Growth Performance, Lipid Metabolism, and Intestinal Flora of Largemouth Bass (Micropterus salmoides). Aquaculture Nutrition, 2022.
|
Malapure, C. D., Kawitkar, S. B., Deshmukh, G. B., Bendale, L. N., & Patankar, R. B. (2011). Influence of dietary supplementation of phospholipids and lysophospholipids on performance of broilers. Indian Journal of Animal Nutrition, 28(3), 316-319.
|
McFadden, J. W. (2019). Dietary lecithin supplementation in dairy cattle. On line.
|
Mine, Y., Chiba, K., & Tada, M. (1993). Effect of phospholipids on conformational change and heat stability of ovalbumin. Circular dichroism and nuclear magnetic resonance studies. Journal of Agricultural and Food chemistry, 41(2), 157-161.
|
NASEM (National Academies of Sciences, Engineering and Medicine), 2021. Nutrient Requirements of Dairy Cattle. The National Academies Press, Washington, DC, USA.
|
National Research Council. (2001). Nutrient requirements of dairy cattle: 2001. National Academies Press.
|
Ogola, O. E. (2022). Physiological responses of broiler chickens to exogenous emulsifier supplementation in tallow-incorporated reduced-energy diets.
|
Palhares Campolina, J., Gesteira Coelho, S., Belli, A. L., Samarini Machado, F., R. Pereira, L. G., R. Tomich, T., ... & Magalhães Campos, M. (2021). Effects of a blend of essential oils in milk replacer on performance, rumen fermentation, blood parameters, and health scores of dairy heifers. PLoS One, 16(3), e0231068.
|
Papadopoulos, G. A., Müller, K., Schertling, D., & Di Benedetto, M. (2014). Supplementation of lysolecithin in combination with a multi-non-starch polysaccharides enzyme improves the feed efficiency during the post-weaning period in piglets. Acta Agriculturae Scandinavica, Section A—Animal Science, 64(2), 130-136.
|
Quigley III, J. D., Steen, T. M., & Boehms, S. I. (1992). Postprandial changes of selected blood and ruminal metabolites in ruminating calves fed diets with or without hay. Journal of Dairy Science, 75(1), 228-235.
|
Reis, M. E., Toledo, A. F., da Silva, A. P., Poczynek, M., Fioruci, E. A., Cantor, M. C., ... & Bittar, C. M. M. (2021). Supplementation of lysolecithin in milk replacer for Holstein dairy calves: Effects on growth performance, health, and metabolites. Journal of Dairy Science, 104(5), 5457-5466.
|
Rico, J. E., De Souza, J., Allen, M. S., & Lock, A. L. (2017). Nutrient digestibility and milk production responses to increasing levels of palmitic acid supplementation vary in cows receiving diets with or without whole cottonseed. Journal of Animal science, 95(1), 436-446.
|
Rincker, L. D., VandeHaar, M. J., Wolf, C. A., Liesman, J. S., Chapin, L. T., & Nielsen, M. W. (2011). Effect of intensified feeding of heifer calves on growth, pubertal age, calving age, milk yield, and economics. Journal of Dairy science, 94(7), 3554-3567.
|
Roy, A., Haldar, S., Mondal, S., & Ghosh, T. K. (2010). Effects of supplemental exogenous emulsifier on performance, nutrient metabolism, and serum lipid profile in broiler chickens. Veterinary Medicine international, 2010.
|
Schwarzer, K., & Adams, C. A. (1996). The influence of specific phospholipids as absorption enhancer in animal nutrition. Lipid/Fett, 98(9), 304-308.
|
Shanbhag, K., Mhetre, A., Khandelwal, N., & Kamat, S. S. (2020). The lysophosphatidylserines—an emerging class of signalling lysophospholipids. The Journal of Membrane biology, 253, 381-397.
|
Smith, F.E. and T.A. Murphy. March 10, 1993. AMMONIA NITROGEN IN RUMEN FLUID AND AMMONIA NITROGEN RELEASE; Up-dated September 2013.
|
Sun, H. Y., & Kim, I. H. (2019). Evaluation of an emulsifier blend on growth performance, nutrient digestibility, blood lipid profiles, and fecal microbial in growing pigs fed low energy density diet. Livestock Science, 227, 55-59.
|
Tagesson, C., Franzen, L., Dahl, G., & Weström, B. (1985). Lysophosphatidylcholine increases rat ileal permeability to macromolecules. Gut, 26(4), 369-377.
|
Terré, M., Devant, M., & Bach, A. (2007). Effect of level of milk replacer fed to Holstein calves on performance during the preweaning period and starter digestibility at weaning. Livestock Science, 110(1-2), 82-88.
|
Tsukahara, T., Matsuda, Y., & Haniu, H. (2017). Lysophospholipid-related diseases and PPARγ signaling pathway. International Journal of Molecular Sciences, 18(12), 2730.
|
Van Keulen, J. Y. B. A., & Young, B. A. (1977). Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. Journal of Animal Science, 44(2), 282-287.
|
Wang, Q. Q., Long, S. F., Hu, J. X., Li, M., Pan, L., & Piao, X. S. (2019). Effects of dietary lysophospholipid complex supplementation on lactation performance, and nutrient digestibility in lactating sows. Animal Feed Science and Technology, 251, 56-63.
|
Wealleans, A. L., Buyse, J., Scholey, D., Van Campenhout, L., Burton, E., Di Benedetto, M., ... & Jansen, M. (2020). Lysolecithin, but not lecithin, improves nutrient digestibility and growth rates in young broilers. British poultry science, 61(4), 414-423.
|
Zampiga, M., Meluzzi, A., & Sirri, F. (2016). Effect of dietary supplementation of lysophospholipids on productive performance, nutrient digestibility and carcass quality traits of broiler chickens. Italian Journal of Animal Science, 15(3), 521-528.
|
Zangeneh, S., Torki, M., Lotfollahian, H., & Abdolmohammadi, A. (2018). Effects of dietary supplemental lysophospholipids and vitamin C on performance, antioxidant enzymes, lipid peroxidation, thyroid hormones and serum metabolites of broiler chickens reared under thermoneutral and high ambient temperature. Journal of Animal physiology and animal nutrition, 102(6), 1521-1532.
|
Zhang, M., Bai, H., Zhao, Y., Wang, R., Li, G., Zhang, G., & Zhang, Y. (2022). Effects of Dietary Lysophospholipid Inclusion on the Growth Performance, Nutrient Digestibility, Nitrogen Utilization, and Blood Metabolites of Finishing Beef Cattle. Antioxidants, 11(8), 1486.
|
Zhao, P. Y., & Kim, I. H. (2017). Effect of diets with different energy and lysophospholipids levels on performance, nutrient metabolism, and body composition in broilers. Poultry Science, 96(5), 1341-1347.
|
Zhao, P. Y., H. L. Li, M. M. Hossain, and I. H. Kim. 2015. Effect of emulsifier (lysophospholipids) on growth performance, nutrient digestibility and blood profile in weanling pigs. Anim. Feed Sci.
|
Zubay, G. (1983). Biochemistry Reading MA.
|
|